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Abstract
Osteoporosis is the most prevalent skeletal disorder, a condition that is associated with significant social and healthcare 
burden. In the elderly, osteoporosis is commonly associated with sarcopenia, further increasing the risk of fracture. Sev-
eral imaging techniques are available for a non-invasive evaluation of osteoporosis and sarcopenia. This review focuses on 
dual-energy X-ray absorptiometry (DXA), as this technique offers the possibility to evaluate bone mineral density and body 
composition parameters with good precision and accuracy. DXA is also able to evaluate the amount of aortic calcification 
for cardiovascular risk estimation. Additionally, new DXA-based parameters have been developed in recent years to further 
refine fracture risk estimation, such as the Trabecular Bone Score and the Bone Strain Index. Finally, we describe the recent 
advances of a newly developed ultrasound-based technology known as Radiofrequency Echographic Multi-Spectrometry, 
which represent the latest non-ionizing approach for osteoporosis evaluation at central sites.

Keywords Dual-energy X-ray absorptiometry (DXA) · Bone mineral density (BMD) · Trabecular Bone Score (TBS) · 
Bone Strain Index (BS) · Radiofrequency Echographic Multi-Spectrometry (REMS) · Osteoporosis

Introduction

Osteoporosis is the most prevalent skeletal disorder, a condi-
tion that is associated with significant social and healthcare 
burden. This disease is defined by a combination of reduced 
bone mass and microarchitecture deterioration, leading to 
increased risk of fragility fracture typically occurring at the 
spine, femur, and distal radius. In the elderly, osteoporosis 
is commonly associated with sarcopenia, which represents 
a progressive and age-related loss of muscle mass; the com-
bination of both diseases is now recognized as osteosarco-
penia, further increasing the risk of fracture.

Several imaging techniques are available for a non-
invasive evaluation of bone and body composition to diag-
nose osteoporosis and sarcopenia. This review specifically 
focuses on dual-energy X-ray absorptiometry (DXA), as 
this technique offers the possibility to evaluate bone min-
eral density (BMD) and body composition parameters with 
good precision and accuracy. DXA is also able, in the lateral 
acquisition, to estimate the amount of aortic calcification 
for cardiovascular risk estimation. Additionally, new DXA-
based parameters have been developed in recent years to 
further refine fracture risk estimation, such as the Trabecular 
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Bone Score (TBS) and the Bone Strain Index (BSI). This 
article is aimed at revising the current evidence available 
for the use of DXA in this scenario, providing radiologists 
with up-to-date information on newer diagnostic possibili-
ties offered by this technique.

This article also presents a newly developed ultrasound-
based technology known as Radiofrequency Echographic 
Multi-Spectrometry (REMS), which represents the latest 
non-ionizing approach for osteoporosis evaluation at central 
sites. REMS technology is able to analyze the raw unfiltered 
ultrasound signal acquired at lumbar spine and proximal 
femur, obtaining BMD ultrasound values that showed to be 
very accurate compared to DXA.

DXA‑based Trabecular Bone Score

BMD assessed by DXA is the main criterion for the diagno-
sis of osteoporosis and for the prediction of fragility fracture 
risk: BMD measures bone quantity and is therefore strongly 
related to bone resistance [1].

However, many subjects with fragility fractures show 
slightly low or even normal BMD values. This is because 
other skeletal features such as bone microarchitecture, bone 
remodeling, and bone geometry contribute to bone quality 
and influence fracture risk [2].

To better assess bone quality, other imaging techniques 
have been employed, such as quantitative computed tomog-
raphy (QCT), high-resolution peripheral QCT (HRpQCT), 
and high-resolution magnetic resonance imaging (MRI). 
However, these technologies have higher costs, lower 
availability, and higher ionizing radiation dose (for QCT) 

compared to DXA [3]. Therefore, alternative DXA-based 
parameters have been developed over time to refine fracture 
risk prediction and investigate skeletal features other than 
BMD.

The Trabecular Bone Score (TBS), introduced in early 
2010, is a DXA-based textural index that evaluates gray-
level variations of each pixel of a DXA image: These vari-
ations depend on the specific X-ray absorption properties 
of the corresponding 3D tissue, thus reflecting the tissue 
microarchitecture. In this way, TBS can provide a valid 
indirect estimation of lumbar trabecular microarchitecture, 
even if a direct measurement is not feasible (due to technical 
limitations related to pixel width of DXA image, which is 
about four time larger the mean size of trabeculae) [4]. TBS 
is calculated by a specific software (TBS iNsight; Medi-
maps, Plan-les-Ouates, Switzerland) on the lumbar spine 
DXA image, in the same region of interest used for BMD 
measurement [5]. High TBS values correspond to a dense 
trabecular structure and thus a good microarchitecture; on 
the contrary, a degraded bone microarchitecture matches low 
TBS values [6].

A large meta-analysis developed threshold values: 
TBS > 1.310 is considered normal and corresponds to a 
normal bone microarchitecture and a low fracture risk; TBS 
values between 1.23–1-31 identify a partially degraded 
microarchitecture; TBS < 1.230 corresponds to degraded 
microarchitecture and a higher risk of fractures, in both men 
and women [7]. An example of three different TBS reports 
showing normal, partially degraded, and degraded micro-
architecture is shown in Fig. 1.

In 2015, the International Society for Clinical Densitom-
etry (ISCD) TBS task force published a position paper to 

Fig. 1  Lumbar spine TBS from three different subjects presenting 
with normal, partially degraded, and degraded microarchitecture. Of 
note, a color map is displayed over the lumbar spine region of inter-

est: Green is associated with higher TBS values, while red is associ-
ated with degraded microarchitecture
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develop official positions on the incorporation of TBS in 
clinical practice [5]. The paper highlights that low TBS val-
ues are associated with an increase in both prevalent and 
incident fragility fractures. In particular, the use of TBS 
is recommended for the assessment of vertebral, hip, and 
major osteoporotic fracture risk in postmenopausal women 
and for hip fracture risk in men older than 50 years [5]. TBS 
also demonstrated to predict fracture risk independently of 
DXA-BMD and clinical risk factors. Therefore, TBS was 
incorporated into the FRAX® tool to adjust 10-year fracture 
probability [5, 7].

A limitation of TBS is that its application is currently not 
advised for monitoring patients under antiosteoporotic treat-
ment [8]. This is explained by the fact that TBS has a slightly 
lower precision compared to BMD, leading to higher least 
significant values (LSC) and consequently longer interval to 
detect changes over time [5, 9].

A technical issue which has characterized TBS software 
from the beginning was the underestimation of TBS value 
due to the individual’s regional soft tissue thickness. Con-
sequently, TBS showed a negative correlation with BMI, 
as opposed to BMD and biomechanical properties of the 
bone. An updated version of TBS algorithm (TBSv4.0) uses 
a compensation for the thickness of the lumbar soft tissue to 
overcome this issue and demonstrated a positive correlation 
of TBS values with BMI [10].

Regarding new applications, a beta version of TBS soft-
ware was recently developed for the evaluation of the hip 
(TBS-Hip—v1.0, Medimaps group, Geneva, Switzerland). 
A recent study conducted on women of 65 years or older 
who were residents of long-term care facilities tried to 
evaluate the performance of this new algorithm. The study 
showed a moderate correlation between BMD and TBS-Hip 
results at total hip, femoral neck, and greater trochanter, sug-
gesting that TBS-Hip can potentially provide information 
on bone architecture of the hip, as already demonstrated for 
the spine [11].

DXA‑based Bone Strain Index

As above mentioned, TBS well predicts fracture risk by 
reflecting the microarchitecture of the bone. However, it is 
not able to evaluate bone strength or fatigue, two parameters 
that impact on the bone resistance to loads.

In this scenario, another DXA-derived index called Bone 
Strain Index (BSI) was introduced in 2019, with the aim of 
further exploring bone quality features. BSI provides infor-
mation about bone strength and resistance to loads, which 
were not assessed from existing indices [12].

This index is based on the application to DXA images 
of a mathematical model defined as finite element analysis 
(FEA). FEA model relies on the principle that a complex 

object can be analyzed by transforming it into many sim-
pler and smaller elements (i.e., “finite elements”) that can 
easily be managed to simulate any specific phenomenon 
[13].

The finite element analysis of the lumbar or femur DXA 
scan is automatically performed by BSI software (Tecnolo-
gie Avanzate s.r.l., Torino, Italy), starting from the division 
of the DXA area into small triangles, following the mapping 
contour of DXA image. Once the DXA image is divided in 
“finite elements” (the triangles), a FEA mathematical model 
is generated for both lumbar spine and proximal femur [14]. 
At the lumbar spine, the software simulates the gravitational 
force by applying a load to the upper vertebral plate, while a 
constraint is applied to the lower plate [15]. The magnitude 
of the load acting on the upper plate derives from a model 
which simulates forces in standing position, also depending 
on subject’s weight and height [16].

At the femur site, BSI algorithm tries to simulate a lat-
eral fall, with a patient-specific impact force applied to the 
greater trochanter area and the constraints applied on the 
femoral head and the inferior part of the shaft [17].

The software generates a graphical representation of bone 
strain amount, allowing an easy identification of the areas 
characterized by higher strain concentration. Thus, the mean 
BSI value reflects the average bone equivalent strain, with 
higher BSI values corresponding to higher strain level and 
therefore to higher fracture risk. On the other hand, lower 
BSI values are indicative of a bone less subjected to strain, 
thereby at lower risk of fracture.

BSI threshold values for the Caucasian population have 
been proposed in a study on postmenopausal Italian women: 
BSI ≤ 1.7 corresponds to normality; BSI between 1.7 and 2.5 
reflects a low resistance to strain; BSI > 2.5 is related to poor 
resistance to strain [18]. Figure 2 shows some examples of 
different BSI diagnoses at lumbar spine and femoral neck.

Given its recent introduction, literature on BSI is rapidly 
growing and clinical studies have showed BSI usefulness in 
both primary and secondary osteoporosis. In osteoporotic 
patients, BSI values were found to be positively correlated 
with an increase of risk of fragility fractures at the lumbar 
spine and the hip in postmenopausal women, regardless of 
FRAX® [19]. Moreover, studies investigated the capability 
to predict the occurrence of fragility re-fracture, showing 
that BSI is an accurate predictive index of re-fracture [20, 
21].

Regarding secondary osteoporosis, BSI can be useful 
in recognizing subjects at high risk for fragility fractures 
among patients with primary hyperparathyroidism [22, 
23]. Lastly, BSI showed its usefulness even among young 
patients with neurofibromatosis type I (NF1), with higher 
BSI values in pubertal patients in comparison with prepu-
bertal ones, implying a decrease in bone resistance to loads 
in older pediatric patients with NF1 [24].
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In terms of monitoring antiosteoporotic treatment, few 
data are available in the literature. One recent study dem-
onstrated that anabolic therapy with teriparatide seems to 
improve BSI, suggesting an increase of bone strength as a 
teriparatide effect [25].

REMS

In recent years, a new ultrasound-based non-ionizing tech-
nique for the evaluation of BMD, bone fragility, and fracture 
risk has been introduced in clinical practice. This technique 
is called Radiofrequency Echographic Multi-Spectrometry 
(REMS) and is based on the spectral analysis of the whole 
raw unfiltered ultrasound signals (also called radiofrequency 
(RF) ultrasound signals) that are reflected from the bony 
surface. Conversely from traditional ultrasound techniques 
in bone densitometry, typically applied to peripheral sites 
(such as the calcaneus), REMS can be applied to central 
sites such as the lumbar spine and the femoral neck [26, 27].

What is new in the REMS technology is that the whole 
spectrum of information from the reflected “raw” unfiltered 
ultrasound wave is used to obtain information from bone, 
differently from conventional ultrasound devices, which use 
a limited part of the reflected wave to produce the B-mode 
image. REMS technology acquires and analyzes the whole 
RF, extracting a specific RF spectrum from the given sono-
graphic bony layer, being able to identify and analyze the 
cortical and trabecular part of the bone [28]. More in detail, 
the REMS scan is acquired by placing the ultrasound probe 
on the specific anatomical site (abdomen for the lumbar 
spine or hip for the femoral neck). The operator is asked 
to adjust the scan depth in order to identify and properly 
visualize the vertebral or femoral cortical bone interface. 
After adjusting the transducer focus immediately above the 
cortical bone, REMS software is capable to automatically 
detect the region of interests (ROIs) at each site. See Fig. 3 
for a schematic example of REMS acquisition working prin-
ciple at femoral neck. The acquisition of the RF signal sets 

Fig. 2  Examples of normal, low, and poor bone resistance to strain 
measured with BSI at lumbar spine (top) and proximal femur (bot-
tom). Of note, the higher the BSI value (expressed as shades or 
orange and red), the higher is the strain level to bone, with increased 
fracture risk. For postmenopausal Italian women, the following 
thresholds have been proposed: BSI ≤ 1.7 = normality; BSI between 
1.7 and 2.5 = low resistance to strain; BSI ≥ 2.5 = poor resistance to 
strain. [18]

Fig. 3  Example of working principle of REMS technology at proxi-
mal femur (image a), which is analogous to that at lumbar spine. Data 
from patient’s different spectra are analyzed (image b) and compared 
with reference models of healthy and pathologic spectral curves 

(image c). Such comparison allows for the generation of quantitative 
(BMD, T-score, and Z-score) and qualitative (Fragility Score) param-
eters
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the basis for the following calculations that allow for the 
quantitative evaluation of BMD. For each sonographic line, 
a corresponding spectrum of radiofrequency is obtained, 
allowing at the same time to identify ROIs from trabecular 
bone and exclude bone signal artifacts (such as those origi-
nating from osteophytes) thanks to the software ability to 
identify abnormal spectral characteristics. A final trabecular 
patient-specific spectrum is generated, which is then auto-
matically compared by the software to reference models for 
normal and osteoporotic bones, matched by gender, age, and 
BMI [29]. The whole procedure allows for the calculation 
of the percentage of analyzed spectra that were classified 
as “osteoporotic,” which is called the “osteoporotic score.” 
This score is therefore transformed by linear equations into 
ultrasound BMD values (US-BMD), which are expressed 
as g/cm2, and enables the generation of T-score and Z-score 
values by quantitative comparisons with the NHANES ref-
erence curves [26, 27]. A typical REMS report is provided 
in Fig. 4.

Several studies were performed to clinically validate the 
REMS technique. In 2019, a multicenter study performed 
in Italy by Di Paola et al. evaluated the REMS precision 
and accuracy on a large population of 1914 postmenopausal 
women enrolled in six clinical centers [30]. REMS accuracy 
was assessed by comparing US-BMD results with BMD by 
DXA, the reference technique in clinical practice. Regard-
ing the intraoperator precision (two consecutive acquisitions, 
same patient, same operator), a root-mean-square coeffi-
cient of variation (RMS-CV) of 0.38% was found at lumbar 
spine, while 0.32% was found at femoral neck. Regarding 
the inter-operator repeatability (a third REMS scan on the 

same patient, performed by a second operator), RMS-CV 
values of 0.54% and 0.48% were reported for lumbar spine 
and femoral neck, respectively [30]. A very recent study 
from Messina et al. in 2023 confirmed these optimal val-
ues of intraoperator precision (RMS-CV: 0.47% for lumbar 
spine, 0.32% for femoral neck), as well as those related to the 
inter-operator repeatability (0.55% for lumbar spine, 0.51% 
for femoral neck) [31]. Such values are generally superior 
to those of DXA, as the precision of this technique has been 
reported to range between 0.91 to 1.92% at the spine and 1.5 
to 2.25% at the femoral neck [32, 33].

Diagnostic accuracy of REMS was mainly assessed by 
comparing it to DXA and determining the concordance 
between these two techniques. The Italian multicenter study 
by Di Paola et al. estimated the concordance between REMS 
and DXA by calculating the Cohen’s kappa (k), reporting a 
good discrimination capability between osteopenic, normal, 
and osteoporotic subjects with k = 0.82 (lumbar spine) and 
k = 0.79 (femoral neck) [30]. Additional analysis showed that 
the sensitivity of REMS technique in differentiating osteo-
porotic from non-osteoporotic (osteopenic and healthy) sub-
jects was 91.7% at the spine and 91.5% at the femur, with a 
corresponding specificity of 92.0% and 91.8%, respectively. 
Authors also evaluated the degree of correlation between the 
two techniques, reporting very high values with r = 0.94 for 
the spine and r = 0.93 for the femoral neck, both values being 
statistically significant [30].

In 2021, a wider European multicenter study was con-
ducted in five clinical centers to evaluate the diagnostic 
accuracy of REMS technique compared to DXA for femo-
ral neck and lumbar spine [34]. The study involved 4307 

Fig. 4  Example of a REMS report at proximal femur (a) and lumbar 
spine (b). BMD and T-score values are provided for femoral neck and 
total spine (L1–L4), but also at other regions of interest (total femur, 

trochanter, single vertebrae). The final diagnosis is done according to 
femoral neck and total spine T-score
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female Caucasian subjects, and the comparison in terms 
of diagnostic classification of patients with/without osteo-
porosis showed a sensitivity of 90.4% and a specificity 
of 95.5% at femoral neck, while the diagnostic accuracy 
yielded a sensitivity of 90.9% with a specificity of 95.1% 
at lumbar spine [34]. Such results indicated a very good 
sensitivity and specificity for REMS in identifying osteo-
porotic patient in terms of agreement with DXA.

An interesting aspect is the possibility of REMS tech-
nology to overcome those artifacts commonly encountered 
(osteoarthrosis, vertebral fractures) that typically overes-
timate BMD values at DXA. Caffarelli et al. showed that 
in subjects with spinal osteoarthritis, REMS was able to 
identify a greater number of subjects as “osteoporotic” 
compared with DXA (35.1% vs 9.3%, respectively) [35]. 
Further studies will better clarify this ability, possibly by 
comparing REMS values with those of other techniques 
such as quantitative CT.

The use or REMS has been explored with promising 
results in several conditions leading to secondary osteo-
porosis, such as in young women with anorexia nervosa 
[36] or in elderly subjects with type 2 diabetes mellitus 
[37], as well as conditions in which DXA assessment is not 
feasible such as in healthy pregnant women [38].

A recent development of REMS is the Fragility Score. 
This score (adimensional value between 0 and 100) is 
obtained by comparing the patient’s spectrum with refer-
ence models of fractured and not fractured subjects and is 
an indicator of bone quality independent of BMD: Lower 
values are associated with a good quality of examined 
bone and vice versa. Data about FS are growing, with the 
results obtained from an up to 5-year longitudinal study by 
Pisani et al. showing how lumbar spine and femoral FS are 
able to discriminate between fractured and non-fractured 
subjects with higher performance with respect to T-scores 
values measured by both DXA and REMS [29]. Promising 
results for FS have also been reported in differentiating 
between subjects with primary and disuse-related osteo-
porosis [39].

Regarding some limitations related to REMS, of course 
there may be variability in its performance across different 
patient populations or clinical settings [40]. Of course, other 
limitations may arise from those conditions that usually limit 
the usefulness of ultrasound (obesity, operator's skills, or 
other conditions that may create an obstacle to ultrasound 
beam such as air); nevertheless, the technique is capable to 
get proper measurements even from small portions of the 
examined vertebra; therefore, a diagnostic value is obtained 
even in the presence of obstacle to full vertebra visualiza-
tion. In any case, fasting is suggested before the exam as for 
any other abdominal ultrasound scan. Regarding operator’s 
skills, the very good inter-operator reproducibility suggests 
that, after proper machine training, REMS it is little affected.

Lastly, the accuracy of REMS was compared only with 
DXA, which represents the gold standard. Further studies 
are comparing REMS accuracy with that of more complex 
techniques such as QCT.

Body composition analysis using DXA

The study of body composition has been receiving increas-
ing attention from the scientific community in recent years, 
becoming a trending topic in medicine. Body composition 
analysis refers to the description and quantification of the 
different components that constitute the human body [41]. 
Body composition analysis can be applied to the assessment 
of physiological and paraphysiological conditions like aging 
or adaptation to training in athletes, but also to the evalua-
tion of a myriad of diseases such as obesity, diabetes mel-
litus, cancer, and sarcopenia [42–44].

Several imaging and non-imaging techniques are indeed 
available for body composition analysis, with variable char-
acteristics (see Table 1). Non-imaging techniques include 
anthropometry and bioimpedance analysis (BIA). Imaging 
methods include DXA, CT, MRI, and US [45]. At present, 
DXA is the most frequent radiologic technique used to eval-
uate body composition, being accurate, widely available, and 
associated with a very low radiation dose [46].

DXA employs two X-ray beams of different energy. The 
attenuation of X-ray beams through the body depends on 
the density and thickness of human tissues but also on the 
energy of photons. DXA thus measures the R-value, which 
is the ratio of the attenuation coefficients at the two different 
photon energy levels. The R-value is specific to each tissue. 
It is constant for bone and fat in all individuals, while show-
ing inter-individual variability for soft tissue, depending on 

Table 1  Summary of features characterizing the imaging techniques 
used for body composition analysis; adapted from [45, 46]

DXA dual-energy X-ray absorptiometry, CT computed tomography, 
MRI magnetic resonance imaging, US ultrasound imaging

Feature DXA CT MRI US

Radiation  +  +  +  + − −
Cost  +  +  +  +  +  +  + 
Availability  +  +  +  +  +  +  +  +  + 
Precision  +  +  +  +  +  +  +  +  +  + 
Portability − − −  +  + 
Complexity  +  +  +  +  +  +  +  +  + 
Three-dimensional assessment −  +  +  +  +  + −
Dynamic evaluation − − −  +  +  + 
Distinction of visceral versus 

subcutaneous fat
 +  +  +  +  +  +  +  + 

Distinction of intramuscular fat −  +  +  +  +  +  + 
Opportunistic use −  +  +  +  + −
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its composition. A higher fat percentage corresponds to a 
lower R-value [47]. DXA is based on a three-compartmen-
tal model, comprising fat mass (FM), non-bone lean mass 
(LM), and bone mineral content (BMC) [47]. Of note, DXA 
does not measure directly these three components. In pixels 
that contain bone, this technique distinguishes bone from 
soft tissue, including both FM and LM. In order to quantify 
separately LM and FM, DXA relies on pixels adjacent to 
bone that comprise only soft tissue [48]. In clinical practice, 
whole-body DXA is generally performed for the study of 
body composition. The effective dose for a whole-body scan 
is only 4–5 μSv with the newest generation of densitometers, 
meaning that DXA can be considered a low-dose technique 
for both patients and operators [49, 50].

Body composition parameters obtained by DXA are sus-
ceptible to error or variation due to technical and/or bio-
logical aspects [49]. To minimize biological variability, it 
is recommended to acquire the scan in standardized condi-
tions, preferably with subjects at rest and euhydrated, after 
an overnight fast, with an empty bladder [51].

The report of a whole-body DXA scan for body compo-
sition analysis should include values of body mass index 
(BMI), bone mineral density (BMD), bone mineral content 
(BMC), total mass, total lean mass, total fat mass, and per-
cent fat mass [45]. DXA also allows to quantify visceral 
adipose tissue (VAT) by the use of specific algorithms that 
are integrated in the newest software versions (CoreScan™, 
GE Healthcare or InnerCore™, Hologic) [49]. These algo-
rithms employ geometric assumptions to subtract the mass 
of the subcutaneous adipose tissue (SAT) layer from the 
total fat mass in the android region, as the width of the SAT 
layer can be estimated along the lateral borders of the abdo-
men [52]. In addition, DXA enables to obtain several body 
composition indices, such as android/gynoid (AG) ratio, fat 
mass index (FMI = fat mass/height squared), lean mass index 
(LMI = lean mass/height squared), appendicular lean mass 
index (ALMI = appendicular lean mass/height squared; also 
called appendicular skeletal muscle index or ASMI), and 
lipodystrophy indices (trunk to leg fat mass ratio and trunk 
to leg percent fat) [45]. These indices can be easily com-
puted by inserting anthropometric parameters like weight 
and height in the system, and by defining a number of stand-
ard regions of interest (ROI) during the analysis of the DXA 
scan, including the trunk, arm, leg, android, and gynoid 
areas [47]. Their main problem is that the respective cutoff 
values are often variably defined in literature, with no uni-
versal consensus. However, adiposity indices can improve 
the stratification of cardiometabolic risk beyond BMI [53]. 
In addition, since BMI does not differentiate between lean 
mass and fat mass, the evaluation of obesity may benefit 
from the use of adiposity indices derived by DXA, including 
percent fat mass and FMI. By contrast, lean mass indices 
are now being employed for the assessment and diagnosis 

of sarcopenia [46]. The revised European consensus on 
definition and diagnosis of sarcopenia by the European 
Working Group on Sarcopenia in Older People (EWGSOP) 
supports the use of DXA to determine low muscle quan-
tity and recommends specific cutoff points for appendicu-
lar skeletal mass (ASM) and ASMI; these are appendicular 
skeletal mass < 20 kg in men and < 15 kg in women and 
ASMI < 7 kg/m2 in men and < 5.5 kg/m2 in women [54]. Of 
note, these recommendations focus on the European popu-
lation, but there may be relevant differences in body com-
position parameters depending on ethnicity, although this 
holds true more for adiposity indices [55]. Figure 5 shows 
three cases of total body DXA evaluating different condi-
tions using body composition parameters (lean and adipose 
indices).

DXA has been compared with CT and MRI for the meas-
urement of fat mass and skeletal mass. CT and MRI are 
generally considered the gold standard in body composition 
analysis, particularly at organ/tissue level [56]. While DXA 
may underestimate fat mass and overestimate lean mass as 
compared, respectively, to CT/MRI-measured adipose tis-
sue and skeletal muscle mass, since it considers chemical 
compartments (= FM as lipids and LM as water, proteins, 
carbohydrates, and other soft tissue components including 
minerals) rather than actual anatomical compartments [46], 
DXA-derived parameters seem to correlate well with CT- 
and MRI-derived measurements [57].

It is worth underlining that DXA can provide simultane-
ous information on soft tissues and bone mineral density/
content. This is relevant in the diagnosis of an emerging 
geriatric syndrome associated with adverse outcomes known 
as osteosarcopenia, which typically requires the presence 
of both osteopenia/osteoporosis and sarcopenia [58]. Of 
note, osteosarcopenia does not have a dedicated diagnos-
tic model, which rather stems from those of its two respec-
tive components. Therefore, its definition is not completely 
standardized: While some published studies include only 
osteoporosis as part of osteosarcopenia, others also include 
osteopenia; in addition, several diagnostic criteria can be 
used for sarcopenia [59]. Osteopenia/osteoporosis are diag-
nosed based on WHO criteria which rely on the T-score 
derived from DXA-measured aBMD [60]. According to 
the EWGSPO2 algorithm [54], which is widely accepted 
in Europe, confirmed sarcopenia instead requires the pres-
ence of low muscle strength together with low muscle qual-
ity or quantity; the latter can be identified via low ASM or 
ASMI determined through DXA. DXA is unique in its abil-
ity of addressing both components of the osteosarcopenic 
syndrome.

To sum up, despite having some limitations, DXA 
appears to be an excellent option for the evaluation of body 
composition in clinical practice, given its low dose, wide 
availability, limited cost, and good precision and accuracy. 
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A whole-body DXA scan provides a considerable amount of 
information with major clinical relevance. However, further 
research is needed to optimize cutoff points for fat mass and 
lean mass indices.

Abdominal aortic calcification assessment 
using DXA

Abdominal aortic calcification (AAC) is a common patho-
logic condition leading to the formation of calcific depos-
its in the wall of the abdominal aorta. The prevalence of 
AAC increases with advancing age, reaching 100% in men 
and women over age 75 [61]. AAC is associated with con-
ventional cardiovascular risk factors such as hypertension, 
smoking, dyslipidemia, hyperglycemia, and overweight/

obesity [62]. On the other hand, AAC is now recognized 
as an independent predictor of cardiovascular disease and 
mortality [63], in terms of coronary heart disease and myo-
cardial infarction [64] as well as stroke and intermittent 
claudication [65]. Therefore, detection of AAC, together 
with assessment of its extent and severity, may improve the 
stratification of cardiovascular risk in the general popula-
tion, which could eventually translate into optimized clini-
cal management and prevention of cardiovascular events 
[66]. In addition, an independent association of AAC with 
decreased bone mineral density (BMD) and increased frac-
ture risk has been reported by multiple studies [67, 68] and 
confirmed by a recent meta-analysis [69]. This suggests 
that the evaluation of AAC may simultaneously provide 
information on the risk of cardiovascular morbidity/mor-
tality and bone loss.

Fig. 5  The use of total body DXA for evaluating different condi-
tions using lean and adipose indices of body composition. Figure A 
shows a 64-year-old man with normal values of appendicular lean 
mass index (ALMI), corresponding to 7.28 kg/m2 (normal values for 
men ≥ 7.0  kg/m2 [54]). Figure B shows a 80-year-old woman with 
severe sarcopenia as demonstrated by the very low values of ALMI 
(3.52 kg/m2, arrow); normal values for women are superior or equal 

to 6.0 kg/m2 [54]. The presence of metal implants at the level of left 
tibia can also be appreciated (see circle). Figure C shows the case of 
a 74-year-old woman diagnosed with sarcopenia and excessive body 
fat, predisposing to the condition called “sarcopenic obesity.” ALMI 
value is below 6.0 kg/m2 (see arrow), with concurrent fat mass index 
(FMI) of 10.8  kg/m2. FMI ≥ 9.0  kg/m2 for women is considered as 
excessive fat [79]
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AAC is detectable using different radiologic techniques, 
including lateral lumbar radiographs, lateral spine DXA, and 
CT [70]. DXA is commonly performed in middle-aged and 
elderly individuals for the diagnosis and follow-up of osteo-
porosis, typically via posteroanterior spine and hip scans. 
Although this is not routinely performed in current clinical 
practice, AAC can be correctly identified and scored on an 
additional lateral spine DXA image intended for vertebral 
fracture assessment (VFA), thanks to the improved spatial 
resolution of modern DXA devices [71, 72].

The severity of AAC can be graded using two validated 
scoring systems. The first scoring system—a 24-point semi-
quantitative method (also known as AAC-24)—considers 
calcifications in the abdominal aorta at the levels corre-
sponding to L1–L4 vertebrae [73]. A score from 0 to 3 is 
attributed to calcific lesions in the anterior and posterior 
aortic walls in the eight segments, giving a maximum of 
24 points, as shown in Table 2. A simplified 8-point semi-
quantitative method (also known as AAC-8) was proposed 
in 2006 [74]. This scoring system considers the aggregate 
length of calcification separately for the anterior and poste-
rior aortic walls corresponding to L1–L4, as if the calcific 
deposits at different levels were stacked end to end. A score 
from 0 to 4 is attributed to the anterior and posterior aortic 
walls as shown in Table 2, for a maximum of 8 points. Both 
scoring systems can be applied to lateral lumbar radiographs 
as well as lateral spine DXA images obtained for VFA. A 
score ≥ 5 points for AAC-24 and ≥ 3 points for AAC-8 iden-
tifies patients at risk for cardiovascular disease [75, 76].

The performance of DXA in the detection and scoring of 
AAC has been evaluated in comparison with lateral lumbar 
radiographs and CT, which may be set as gold standards 
[77]. Findings from selected studies are summarized in 

Table 3. Overall, available evidence indicates a good corre-
lation with radiographs and a moderate correlation with CT. 
An example of AAC estimation with the use of lateral DXA 
is shown in Fig. 6, together with a schematic representation 
of AAC-24 and AAC-8 scoring systems.

To conclude, lateral DXA images obtained for VFA allow 
detection and grading of AAC with acceptable sensitivity 
and specificity compared to lateral radiographs or CT, as 
well as good repeatability and reproducibility. Although 
lateral radiographs and CT/QCT show superior accuracy, 
DXA is a valuable option to assess AAC in clinical practice, 
in light of its low dose (≤ 0.005 mSv for a VFA scan [50]) 
and wide availability. Lateral DXA may be intended as a 
sort of screening tool for AAC detection in individuals who 
do not have manifestations of CVD [70]. Patients at risk of 
CVD according to the severity of AAC on lateral spine DXA 
images may benefit from a tighter control of cardiovascular 
risk factors, although no specific therapeutic interventions 
are currently available for AAC [64].

Conclusion

Osteoporosis and the consequent risk of fracture still have 
a high impact on healthcare systems and patients’ qual-
ity of life. New tools and diagnostic technique have been 
developed in recent years to further refine the fracture risk 
estimation.

DXA can be considered as a “multiparametric” technique, 
still representing the reference standard for assessing condi-
tions such as sarcopenia and osteoporosis. The use of lateral 
DXA may allow not only the identification of vertebral frac-
tures, but also allow the evaluation of aortic calcifications. 

Table 2  Two scoring systems (Kauppila and Schousboe) regarding the anterior and posterior calcification of aortic walls at L1-L4 segments

AAC-24 scoring system for grading the severity of calcific lesions in the anterior and posterior aortic walls of each vertebral segment (L1–L4); 
adapted from Kauppila et al. [73]

Score Description

0 No calcification
1 Calcification filling < 1/3 of the longitudinal wall of the aorta
2 Calcification filling ≥ 1/3 but < 2/3 of the longitudinal wall of the aorta
3 Calcification filling ≥ 2/3 of the longitudinal wall of the aorta

AAC-8 scoring system for grading the severity of calcifications in the anterior and
posterior aortic walls at L1–L4; adapted from Schousboe et al. [74]

Score Description

0 No calcification
1 Aggregate length of calcification ≤ 1 vertebral height
2 Aggregate length of calcification > 1 but ≤ 2 vertebral heights
3 Aggregate length of calcification > 2 but ≤ 3 vertebral heights
4 Aggregate length of calcification > 3 vertebral heights
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Additional DXA-based software can also explore parameters 
that goes beyond BMD, such as the Trabecular Bone Score 
and the Bone Strain Index, providing indirect data about 
bone microarchitecture and bone strength, respectively.

At the same time, REMS technology emerged in the last 
years as a novel and accurate ultrasound-based tool to esti-
mate BMD. Scientific evidence confirms that REMS has 
very good concordance with DXA, being a predictor of 
fracture risk in postmenopausal women. Literature about 
REMS is growing also in the context of other secondary 
osteoporosis conditions. Finally, the use of REMS Fragility 
Score offers a further parameter to assess skeletal fragility 
independently from BMD.
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Fig. 6  Image A shows an example of a lateral DXA spine image 
obtained for vertebral fracture assessment (VFA) that can be used 
for scoring abdominal aortic calcification (AAC). Extensive calci-
fication can be appreciated both in the anterior and posterior aortic 
wall at L1–L4 levels (arrow), with a maximum score both for AAC-
24 and AAC-8. Multiple fragility fractures of various degree can be 
seen at dorsal and lumbar spine, with a severe crush fracture at L4 

(asterisk). Image B and C show a schematic representation of AAC-
24 and AAC-8 scoring systems, respectively, to diagnose aortic wall 
calcifications in the anterior and posterior walls. The AAC-24 system 
is based on a score from 0 to 3 at each level, reaching a maximum of 
24 points. The AAC-8 system is based on a score from 0 to 4 overall, 
for a total of 8 points considering both anterior and posterior wall
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